
www.ijcrt.org © 2019 IJCRT | Volume 7, Issue 3 August 2019 | ISSN: 2320-2882

IJCRT1135475 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 234

Serverless Architecture Patterns: Deep Dive Into

Event-Driven, Microservices, And Serverless Apis

Ashutosh Tripathi
SCHOLAR

Engineering Manager, Clara Analytics, USA

Abstract:

Serverless computing has transformed how organizations create, develop, and launch applications, presenting
unparalleled scalability, adaptability, and cost efficiency. Yet, realizing peak performance and durability within
serverless frameworks necessitates a comprehension of architectural blueprints customized for this model. This
whitepaper delves into sophisticated serverless architectural strategies, such as event-driven design,
microservices, and serverless APIs. By examining these strategies and offering pragmatic guidance,
organizations can harness the complete capabilities of serverless computing to spur innovation and provide
meaningful benefits to their customers.

Introduction:
The adoption of serverless architecture has surged due to its capability to lighten the burdens associated with
infrastructure management and adapt resource allocation dynamically according to demand. Nevertheless,
crafting resilient and scalable serverless applications demands meticulous attention to architectural patterns
that capitalize on the distinct features of serverless computing. This whitepaper delves into three pivotal
architecture patterns – event-driven architecture, microservices, and serverless APIs – explaining how they can
be adeptly utilized in serverless settings to tackle prevalent obstacles and attain desired objectives.

Event-Driven Architecture:

Event-Driven Architecture (EDA) is a powerful design pattern that emphasizes the flow of events
throughout a system to trigger actions and enable communication between decoupled components. In
the context of serverless computing, EDA plays a crucial role in designing applications that are scalable,
resilient, and responsive to changing conditions. Let's delve deeper into the components and principles
of Event-Driven Architecture in serverless environments:

1. Event Sources and Sinks:
 Sources: In serverless applications, event sources can include a wide range of triggers, such as

HTTP requests, database changes, file uploads, or messages from other services. These events
represent meaningful occurrences within the system that can drive further actions or processing.

 Sinks: Event sinks, also known as consumers or handlers, are responsible for processing incoming
events and executing the necessary logic or workflows. In serverless architectures, event sinks
are typically implemented as functions that are triggered in response to specific events.

2. Event Queues and Streams:
 Queues: Event queues provide a reliable and scalable mechanism for decoupling event

producers from consumers. Services like Amazon Simple Queue Service (SQS) or Azure Queue
Storage allow events to be stored temporarily until they are processed by consumers. Queues
help manage bursts of events and ensure that no events are lost, even during periods of high
load.

 Streams: Event streams, on the other hand, enable real-time processing of events and support
scenarios where low-latency and high-throughput event processing are required. Platforms such

http://www.ijcrt.org/

www.ijcrt.org © 2019 IJCRT | Volume 7, Issue 3 August 2019 | ISSN: 2320-2882

IJCRT1135475 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 235

as Amazon Kinesis or Apache Kafka provide durable, ordered streams of events that can be
processed by multiple consumers concurrently.

3. Event-Driven Microservices:
 Event-driven microservices embrace the principles of microservices architecture while

leveraging event-driven communication patterns to achieve loose coupling and scalability. Each
microservice is responsible for handling specific types of events or performing discrete business
functions, enabling independent development, deployment, and scaling.

 Event-driven microservices communicate asynchronously through events, allowing them to
react to changes or events in other parts of the system without direct dependencies. This
approach fosters flexibility and agility, as services can evolve independently and adapt to
changing requirements over time.

4. Domain Events and Event Choreography:
 Domain events represent significant changes or state transitions within a system's domain and

serve as the building blocks of event-driven architectures. Events are typically named using past
tense verbs to reflect something that has already happened, such as "OrderPlaced" or
"PaymentProcessed."

 Event choreography refers to the coordination of actions and workflows across multiple services
based on the occurrence of events. Rather than relying on a central orchestrator, services react
to events autonomously, leading to a more decentralized and flexible architecture.
Choreographed event-driven workflows promote resilience and scalability by distributing control
and minimizing single points of failure.

5. Event-Driven Scaling and Resilience:
 Event-driven architectures are inherently scalable and resilient, as they can dynamically scale

resources in response to changes in event volume or workload. Serverless platforms like AWS
Lambda or Azure Functions automatically scale functions based on incoming event rates,
ensuring that resources are provisioned only when needed.

 By decoupling components and leveraging asynchronous communication, event-driven
architectures can tolerate failures gracefully and recover quickly from errors or outages. Services
can retry failed operations, replay events, or use dead-letter queues to handle exceptions and
maintain system integrity.

Event-Driven Architecture is a fundamental design pattern for building scalable, resilient, and responsive
serverless applications. By embracing event-driven communication patterns, organizations can design
systems that are loosely coupled, highly decoupled, and capable of adapting to changing requirements
and conditions with ease. Event-driven architectures empower developers to build event-centric
applications that drive innovation and deliver value to users in today's fast-paced digital landscape.

Microservices Architecture:

Microservices architecture is a design approach that structures an application as a collection of loosely coupled
services, each responsible for a specific business capability. In the context of serverless computing,
microservices offer numerous advantages, including modularity, scalability, and agility. Let's explore how
microservices architecture is applied and adapted within serverless environments:

1. Service Isolation and Decoupling:
 In serverless microservices architecture, each microservice is encapsulated within a serverless

function, which performs a specific business function or handles a particular set of
responsibilities. By isolating functionality within discrete functions, organizations achieve greater
modularity and maintainability, as changes to one microservice do not affect others.

http://www.ijcrt.org/

www.ijcrt.org © 2019 IJCRT | Volume 7, Issue 3 August 2019 | ISSN: 2320-2882

IJCRT1135475 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 236

 Microservices communicate with each other via well-defined APIs or events, enabling loose
coupling and minimizing dependencies between services. This decoupled architecture facilitates
independent development, deployment, and scaling of microservices, allowing organizations to
iterate quickly and respond to changing business requirements.

2. Domain-Driven Design (DDD):
 Domain-Driven Design principles are often applied to serverless microservices architecture to

define boundaries between services based on business domains or subdomains. Each
microservice is responsible for a specific bounded context within the larger domain, allowing
teams to focus on distinct business capabilities and models.

 By aligning microservices with bounded contexts, organizations can ensure that services are
cohesive, maintainable, and aligned with business objectives. DDD encourages collaboration
between domain experts and developers, leading to more effective domain modeling and better
understanding of business requirements.

3. Containerization and Orchestration:
 While serverless computing abstracts away the underlying infrastructure, organizations may still

leverage containerization technologies, such as Docker, to package serverless functions and their
dependencies into lightweight, portable containers. Containerization provides consistency
across development, testing, and production environments, ensuring that functions behave
consistently regardless of the underlying execution environment.

 Orchestration platforms, such as Kubernetes, can be used to manage and orchestrate serverless
functions deployed as containers. Kubernetes provides advanced features for deployment,
scaling, and monitoring of containerized workloads, enabling organizations to achieve greater
control and flexibility over their serverless microservices architecture.

4. Service Discovery and Communication:
 Service discovery mechanisms allow serverless microservices to locate and communicate with

each other dynamically. In serverless environments, services may register themselves with a
service registry or discovery service, allowing other services to discover and invoke them as
needed.

 Communication between microservices in serverless environments can be facilitated through
synchronous HTTP APIs, asynchronous messaging systems (e.g., event queues or streams), or
service meshes. Service meshes provide advanced features for traffic management, load
balancing, and security, ensuring reliable and efficient communication between microservices.

5. Observability and Monitoring:
 Observability is essential for understanding the behavior and performance of serverless

microservices architecture. Organizations may leverage observability tools and practices, such as
distributed tracing, logging, and metrics collection, to gain insights into the health and
performance of individual functions and the overall system.

 By monitoring key metrics, such as latency, error rates, and throughput, organizations can
identify performance bottlenecks, detect anomalies, and optimize the performance of serverless
microservices architecture over time. Additionally, distributed tracing enables organizations to
trace requests across multiple services, providing visibility into the end-to-end flow of requests
and identifying areas for optimization.

Microservices architecture in serverless environments empowers organizations to build scalable, resilient, and
agile applications. By embracing principles of service isolation, domain-driven design, containerization, and
observability, organizations can design and deploy serverless microservices architecture that meets their
business requirements and delivers exceptional experiences to users. Serverless microservices architecture
enables organizations to innovate rapidly, scale efficiently, and adapt to changing market conditions in today's
dynamic digital landscape.

http://www.ijcrt.org/

www.ijcrt.org © 2019 IJCRT | Volume 7, Issue 3 August 2019 | ISSN: 2320-2882

IJCRT1135475 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 237

Serverless APIs:

Serverless APIs play a pivotal role in modern serverless architectures, serving as the primary interface through
which clients interact with backend services and functions. Leveraging serverless computing platforms such as
AWS Lambda, Azure Functions, or Google Cloud Functions, organizations can develop, deploy, and scale APIs
with minimal operational overhead. Let's explore how serverless APIs are designed, implemented, and
managed within serverless architectures:

1. API Gateway Integration:
 Serverless APIs are typically exposed to clients through API gateway services, such as AWS API

Gateway, Azure API Management, or Google Cloud Endpoints. These services act as a front-end
for serverless functions, handling HTTP requests, managing authentication and authorization,
and providing features for request routing, rate limiting, and caching.

 API gateway services integrate seamlessly with serverless functions, allowing organizations to
define HTTP endpoints that trigger specific functions based on incoming requests. This
integration enables developers to build RESTful APIs, webhooks, or event-driven APIs that can
be consumed by clients over the internet.

2. Function Composition:
 Serverless APIs often involve composing multiple functions to implement complex workflows or

business logic. Each function is responsible for a specific task or operation within the API, such
as authentication, validation, data processing, or integration with backend services.

 Function composition enables organizations to break down API logic into smaller, more
manageable units of code, facilitating code reuse, maintainability, and scalability. By
decomposing APIs into smaller functions, developers can iterate quickly, deploy changes
independently, and optimize resource usage more effectively.

3. Serverless API Patterns:
 Several common patterns exist for building serverless APIs, each with its own advantages and

trade-offs. CRUD (Create, Read, Update, Delete) operations are commonly implemented using
serverless functions to perform database operations (e.g., CRUD operations on DynamoDB or
Azure Cosmos DB). Additionally, event-driven APIs leverage asynchronous messaging systems
(e.g., SNS/SQS, Azure Event Grid) to process events and trigger downstream functions.

 Webhooks are another popular pattern for serverless APIs, enabling real-time notifications and
event-driven interactions between systems. Webhooks allow external systems to subscribe to
events and receive notifications from serverless functions, enabling seamless integration with
third-party services or systems.

4. API Lifecycle Management:
 Managing the lifecycle of serverless APIs involves several key activities, including design,

development, testing, deployment, and monitoring. Organizations may adopt API-first design
principles, leveraging tools like OpenAPI (formerly Swagger) to define API contracts and
specifications.

 Continuous integration/continuous deployment (CI/CD) pipelines automate the deployment of
serverless APIs, enabling developers to deliver changes to production quickly and reliably. Tools
like AWS SAM (Serverless Application Model), Azure Functions Core Tools, or the Serverless
Framework facilitate the packaging and deployment of serverless functions and APIs.

 Monitoring and observability are critical for ensuring the health and performance of serverless
APIs. Organizations may leverage logging, metrics, and distributed tracing to monitor API usage,
track errors, and optimize performance. Cloud-native monitoring services (e.g., AWS
CloudWatch, Azure Monitor, Google Cloud Monitoring) provide insights into API behavior and
help organizations identify areas for improvement.

http://www.ijcrt.org/

www.ijcrt.org © 2019 IJCRT | Volume 7, Issue 3 August 2019 | ISSN: 2320-2882

IJCRT1135475 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 238

5. Security and Compliance:
 Security is paramount in serverless API development, with organizations implementing best

practices for authentication, authorization, and data protection. API gateway services offer
features for enforcing authentication mechanisms (e.g., API keys, OAuth, JWT) and authorization
policies (e.g., IAM roles, custom authorizers).

 Compliance with regulatory requirements (e.g., GDPR, HIPAA) is also a consideration for
organizations deploying serverless APIs. Data encryption, access controls, and audit logging help
organizations ensure compliance with relevant regulations and standards, protecting sensitive
data and mitigating risks.

Example of AWS serverless architecture using AWS services.

Serverless APIs are a cornerstone of modern serverless architectures, enabling organizations to build scalable,
resilient, and cost-effective APIs that deliver value to users and clients. By leveraging API gateway services,
function composition, API patterns, and lifecycle management practices, organizations can design and deploy
serverless APIs that meet their business requirements and drive innovation in today's digital landscape.
Serverless APIs empower developers to build and deploy APIs quickly, iterate rapidly, and scale efficiently,
enabling organizations to stay ahead in today's competitive market.
Conclusion:
In summary, embracing sophisticated serverless architecture patterns like event-driven architecture,
microservices, and serverless APIs empowers organizations to construct applications that are scalable, resilient,
and economical within serverless environments. By grasping the principles, optimal methods, and compromises
inherent in each pattern, organizations can devise resilient solutions that align with their business needs and
provide outstanding user experiences. As serverless computing progresses, mastering these architecture

http://www.ijcrt.org/

www.ijcrt.org © 2019 IJCRT | Volume 7, Issue 3 August 2019 | ISSN: 2320-2882

IJCRT1135475 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 239

patterns becomes indispensable for organizations striving to maintain a competitive edge in today's digital
world.

Reference:

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-concepts.html

https://docs.aws.amazon.com/whitepapers/latest/optimizing-enterprise-economics-with-
serverless/understanding-serverless-architectures.html

https://medium.com/@chiragdarji/aws-serverless-event-driven-architecture-5d9b7a05a109

http://www.ijcrt.org/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-concepts.html
https://docs.aws.amazon.com/whitepapers/latest/optimizing-enterprise-economics-with-serverless/understanding-serverless-architectures.html
https://docs.aws.amazon.com/whitepapers/latest/optimizing-enterprise-economics-with-serverless/understanding-serverless-architectures.html
https://medium.com/@chiragdarji/aws-serverless-event-driven-architecture-5d9b7a05a109

